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Problems of control with incomplete information either on the object 
parameters or on its current state or on the disturbances occuring are 

analyzed. Solutions involving an approximate model which can be inve- 
stigated by the methods of position differential games [I] are described. 

I. Many controlled systems with an object describable by differential equations can 

be represented in the following manner. The current state at instant t iqcharacterized 
by a positiony It], where Y = Y [tl is an element of a Hilbert space Y . A family 

CY [*I 1 Y [&I, IT [t,, t*)} of possible motions Y I.1 = {Y it], t, < t < t*} 
is defined for any possible given r*, Y It,], t* and for our action 11 it,, t*), The 

real motion Y [ * 1 can be intermeted as a concrete choice from 

Y 1.1 E {Y [*I 1 Y 1 [t*l, n It+, t*)} (1.1) 
A game situation is obtained. We -the first player -select II [t,, t*); the second pla- 
yer, imaginary in general, selects a realization Y [ * 1 in accord with (1.1). The control 
is examined on the interval t,, < t < 6. The function n [ri, ri+l) = u (711 Y [ri], 

ti+lt 819 %i+l> Ti9 E > 0 is called strategy ‘U . Every function y It], tn < r < 6, 

y It,,] = y,, which can be realized my successive choices (1. l), where t, = ‘61. 

t* = ‘6;+1, i = 0, 1, 2,. . ., 12, ‘Go = to, T, - 69 n [Tic zi+l) = u (---), 
is called a motion y [tl = y [t, to, y,,, VI. 
Let there be given the sets 

M = [{t, y} : t, < t < 6, y E M (t)1 (1.2) 

N = [{t, y} : to < t < 6, y E N (t)l a 3) 
Problem 1. 1 For given {to, Yo}, 6 > &I, M and N find a strategy ff, which 
for every E > 0 ensures the condition 

y hl E M’ (T), y it1 E iv’ (t), to s t -s ‘G -s 6 (1.4) 

for every motion y [t] = y [t, to, y,, Ul for at least one z < 6 if only Zi+l - Tt < 

6 (a). 
Here MC (t) and NC (f) are the E -neighborhoods of M (t) and fi (t) in Y . Strategy 

u can be defined more broadly by including among the arguments another auxiliary 
variable W [7il formable in the control loop. 
Example 1. 1. Let the object be a homogeneous heat-conduction rod (-- 00 < 

E < 00 j controlled bya heat source at point E = 0. A disturbance n [t] is im- 
posed on the source’s controlling intensity u [ tj,l u 1 < p, ( v ( < Y. Here y [r] = 

795 
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{i (6 E), - 00 < E < m}, where 5 (6 c) is the temperature distribution along 
the rod at instant t. For fixed t the function 5 (t, E) = r (E) can be treated as 

an element of the space Y of square-integrable functions II (t), - 00 < g < 00. 

Here 

The equation of motion is 

(1.6) 

where 6 (t) is a 6-function. Let the admissible action n [t,, t*) be the constant 

function u ItI = U*, & \< t i t*, 1 u* 1 < p. As a disturbance v [tl, t, < 

tit* , we admit any piecewise-continuous function ! ZI [t] 1 < v.Family (1.1) 

is a set of solutions y It1 = { 5 (t, Q,-00 < E < CO}, t, < t < t* , of Eq. (1.6) 
with a known boundary condition y [t,] = (5 (t*, g), - 00 < E ( oo}, when 

v [t] ranges over all possible disturbances. The choice of y [ . ] in (1.1) is dictated 
by the choice of Z, [tl, t, < t < t *. The roles of sets M and Ncan be played, for 
instance, by the sets 

M = I{t, 5 (t, *)} : t, < t s 6, II 5 (t, *) II < aI 

N = I{t, 5 (t, . j) : t, < t < 6, II 5 (t, 9 II < PI 

2. Together with the original .z./ -system (1.1) we examine a certain w-model 

of it, whose current state -the positions w [tl -are elements of space Y . We 
assume that the variation of w [tl, W [t, 1 = We on the interval t * < t <t* is de- 
termined by the forces Pi) [t,,t*) andF(2)[t*,t*),so that w[t] = w[t, t,,W *, 

8’(‘), P(2)] . Here Fc2) is chosen first and then F(j) . The following method of forming 

w[tl, t> t, ’ from the position ~7 [to 1 = wo at the expense of successive choice 

of forces F(2) [r**, ri?,) (‘to* = iO, i = 0, 1, 2, . . . )1 is termed procedure Q . At 
an instant rti* < 6 the procedure Q fixes the next half-open interval ‘CC* G l<r;:, 

and the force F(‘) [Ti*, 
F(‘) l_ri*, rz’,i ) 

T&) ,as functions of the history {W [ t 1, to G t < Ti*) , Force 
may be arbitrary from a set of admissible ones. The set of admissib- 

le procedures Q is restricted only by the condition that procedure Q must not generate 
a realization w [ t] with an infinite number of partitions zi* on the interval [to, 6 ] 
for any sequence of choices of P’(l) [IY~*, z&r). 

The following statement is valid. 

Lemma 2.1. For every choice of { t,, w*}, 6 > t,, M,, N, and t* c!Z 

It,, 19,l one and only one of the following two statements is valid for the initial position 

w [t*l = w* : 1) a procedure Q exists which excludes the fulfillment of the condition 

10 171 E M, (T), w it1 E N, (t), t, < t < 7 < 6 
(2.U 

for all the motions w [t] = w [t, t,, weI Q] generated by it; 2) for any choice of 
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force Ii’(*) It,, t*) we can find a force F(r) It,, t*) which for the motion w [ $1 = 

w(g, g,, we, jW’, FPt] either ensures the ~lf~rn~t of the incl~~o~ 

(2.2) 

for some ‘G or realizes a position w It* I = w* for which, as for the initial position, 
there does not exist a procedure Q excluding the condition 

f.9 hl E-E JJ!f, (4, w Et1 E N* (t>, 2, 9 t < z < t* (2.3) 

for all motions w [t] = w It, t*, w*, Q]. 

3. We say that the w-model approximate the y-system from below if for every 
possible pair g It,]: = p+, w It,] = w*, 11 y, - to* 11~ t?g we can find iI It,, t*) 
for every P E It*, $], t* - t, < 6 I such that for every realization y [ - ,I from 
(1.1) we can find 8’@t It,, t”) SO that for any ~(1) [t,, r*) the inequality 

II Y It] - w ]t] 11s < (1 + x (t - t*)) II Y* - w* II2 + v m (t - t*) (3.1) 

is valid for the corresponding motions y [t] and w it] for t, < t < t* where x 
is a constant and lint cp (6) = 0 as 6 -+ 0, We can have another sequence of 
choice of forces: we find Ffa) so that for every FW we can find l-I such that for any 
realization y [ - 1 from (1.1) estimate (3.1) is valid for the motions y It] and w It1 
The following assertion, provable by a well-known scheme (see [l-j, pp. 59-?O), is valid, 

Lemma 3.1, let the w-model approximate the y -system from below. If 
for the position y it,] = y, = w ft,] = wg there does not exist a procedure Q 
excluding (2.1) for M, (t) = I?& (t) and N, (t) = Na (t) for any cx, > 0, then 
we can find a strategy U (z~, y [ail, ritlr E) solving Problem 1.1, 

Suppose that for every z e (t.+, t*) the forces W) ]t,, t*) determine the for- 
ces F@) ft,, T) and 8’@) [r, t*) and, conversely, the forces FIS) [t,, z) and F@ fz, 
t*) determine the forces F(i) It,, t*) (i = 1,2). In this case the corresponding pie- 
ces of motions w ($1, t, < t < z and w [tf, z < t < t* , join together in a natu- 
ral way. Let us assnme that y [. ] is selected from (1.1) as the action of the operator 

y f*l = y {Y ]t,l, rI It,, t*,) (3.21 

prescribed a priori. The class Y of admissible operators (3.2) can be pre-specified 
if the process is regarded from the second player’s positions, 

We say that the w,-model approximates the y-system from above if for every 
possible pair y [t,] = y,, w [t,] = w, we can find the Y in (3.2) for every t* E 

it*, t, -!- 6 < 61 ’ so that for every II lt,, t*) we can find for every set 

(F) [xi*, ‘tzr), i = o,~,. . ., n; x0* = t,, 7,* = t*} asetP(‘f hi*, -63) 
which ensures inequality (3.1). Here F(r) ]r$*, c?+,) are chosen after F@) [ai*, r&) 
while ?&s and P(s) [‘r&r, “G&) are chosen after F(r) kri*, $,f. We can have ano- 
ther sequence of choices of forces: we can find a method for selecting the set (F(l) [ti*, 

r&1)3 such that for every set (F(‘) lri*, ~‘5~)) we can find the Y in {3,2) so that 
for every II f’t i, T$+,) the estimate will be valid for motions y [t] and w Iti . The 
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following statement, which can once again be proved by a well-known scheme (see 
cl]. pp. 59-701, is valid. 

Theorem 3. 1. Let the $-system be regular, i. e, , let it admit of a zc - 
model which approximates it from both below and above. Then for every choice of {t,, 
Yo}, 6 > to, hc and N one and only one of the following assertions is valid for the 
initial position y It,1 = y. : 

1) a strategy U (pi, Y [nil, %+L, E) exists solving Problem 1. I; 
2) there exist y > 0 and a choice of operators Y,of (3.2) (t* = xi, t” = ‘$1) 

as a function of {ai, y [ri]}, which for every motion y [tj excludes (1.4) with E = y, 
if only l;!+r - Xi < 6, (y). 

This statement corresponds to the theorems on the alternative in [l]. 
& It is difficult to satisfy condition (3.1) if space Y is infinite-dimensional. In 

such cases it is appropriate that the TV’ -model approximate not the 9 -system itself 
but some approximation or some mapping of it. Let cr be a certain parameter. We 
introduce a transformation 

Y= ItI = fa (t., Y [tl) (4. I) 

where the .& It] are elements of a Hilbert space Y,. With the sets iw (t) and N (t> 
of Problem 1.1 we associate sets M, (t) and N, (t). Let X,, a > 0, be sets of va- 

lues of CJ * satisfying the conditions Z, c 3p when p > a. Suppose that the con- 
ditions are fulfilled. From y0 [t] E M,” (t), e > 0 follows y [tl E _‘cI”“, $) (t), and 
for any a > 0 we can find X.,,,, and E (a) > &so that y (a, F) < CL for o CC EC{;, 
and E < E (a). For each 6 > 0 we can find ZEipj and (0) > 0 so that from 
ylr 1 t] $ MOP (t) follows y [t] e &.?@J when CT E XFrPt *'Let the very same condi- 
tions be satisfied for N (t) and N, (t), 

Assume that the systems 

(4.2) 

into which system (1.1) can be induced are regular, i. e., admit of W, -models appro- 
ximating them from below and above. Then Theorem 3.1 is again true for such a Y - 
system (1.X) regular in approximaticur. 

The system in Example 1.1 is regular in approximation. Indeed, over the variable 

I! It1 = ,{5 (& ‘3, - 00 < E ( oa} we perform the tra~formation 

where ~3 > 0 is any one fixed value. System (4.2) is determined by the equality 

Cd (& 8 = 5LI V*, E) + 
* (4.4) 
L 

s 1 exp - 
I 

C.2 
t, 2aVfi@+o---z) 4a2(#+a--z) 1 (u* ITI + u [a & 
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where for a fixed action II [t,, t*) t U* [t], t, < t < t* , we obtain the whole 

family (5. (t, E), t, < t< t*, - 00 < E< 00} when II [tl, t, < t < t* . 
ranges over all possible realizations 2, [t]. In accord with (1.7) and (1.8) the sets 

Ma (t) and N, (t) are defined as sets of the functions cd (t, E) of (4.3) wherein 

the functions 5 (t, tj) satisfy the conditions (15 (t, *>I\ < 01 and (15 (t, *)]I < p. All 
functions 5 (t, E), being solutions of Eq. (1.6) and corresponding to all possible u [ tl 
and v [t], to < t < 6 for a fixed initial position 5 (t,, t), are contained in some 

compactum in Y. Hence it follows that the necessary relations between M, and It! 
and between N, and N are fulfilled. 

Let us specify the motions w, [t] = {co (t, &, - oo < E < co} for the % - 
model by the equation 

(4.5) 

( 1 L 5? 
2a~/n(~+a-~) exp - 4n2(e+o--1) 1 ’ 

- 00 <E < 00 
I 

(u* + u*) ) (I u* I < P7 I v* I< y) 

The choice of the measurable function U* [t] (t* < t < t*) will be the force 
&‘(I) [t,, t*) and the choice of the measurable function v* [t] (t* < t < t*) will 
be the force F@) [t,, t*) . Let p > v. Analogously to Probleml. 1 for system (1.1) 

the problem for w,,-model(4.5) can be solved according to the material presented (see 
[1], pp. 207-233). We conclude: Problem 1.1 for system (1.6) has a solution if and cm - 

ly if at least one motion w” [tl = 5” (t, -), W” [toI = W. = y, = 5” (to, -) , of 
the system described by the equation 

42 
4~sJ’-~(fl+ o - t)- ’ 1 

satisfies the conditions 

w” [r] E M, (‘t), w” Ltl E No (t), 1, < t < z < 6 

The resolving strategy U will be extremal to this stable path W” [t] and the cont- 
rol u [t] = u”, ~1 < t < ‘6i+r, will be determined from the condition 

The right-hand sides of Eq.(4.5) belong to some compacturn in Y . Therefore, the 
We -model can be approximated by finite-dimensional WP’ mockAs. 
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6. Let us consider the question of approximating a w-model by a finite-dimen- 
sional r.H-model, Let win) be an element of some n-dime~ional subspace Y(n) 

of space E’ . We say that a sequence of r&f-models approximates a w -model from 
below (above) if for every ~‘(2, [t,, t*) (~‘(1, Ct,, t*)) we can find F$;“’ [t,, t*) 
(F,>l) [t,, P)) so that for every Fi’,” [r*, t*)(F,(‘U [t,, t*)) we can find I;!lj [t,, 

t*) (F@, [t,, t*)) so that the estimate 

jj w It1 I WC”) It1 j/z < (1 + x,, (t - t*)) 11 w* - w$? (12 + (5.1) 

cp 6% 4 (t - t*) 

is valid when t, < t< t* < 6, where lim cp (6, TZ) = 0 as ~1 + oc and 

h-+0, Let the y -system (1.1) be regular in approximation and let each W, -mo- 
del in its own turn be approximated from above and below by a sequence of up’-mo- 

de& Then the solution of Problem 1.1 for the given y -system is determined by the 
solutions of the appropriate analogous problems for the wr)-models with appropriate o 

and large rr. The control process can in fact be effected by realizing in the regulation 
scheme the cascade: {y -system, y,-system, w,-model,wn(ll)-model}.In this case the 
controls IT, F,(z), FL:‘,, 2;,‘1,‘, F,(I) will be selected from conditions (3.1) and (5.1) 
and from the solvability conditions for the analog of Problem 1.1 for the WO(Rf-model, 
The solution of this analog of Problem 1.1 can be constructed by one of the methods in 

RI. 
6, It is well known that the solution of control game problems for finite-dimen- 

sional systems can be regularized in a number of cases by superposing small random 
disturbances. When a w,tn) -model is introduced in the control loop, this regulariza- 

tion can be given a real meaning. 
Let a certain system be described by the equation 

v EL’ Q (61) 

and 'Q are compacta, function f is conti- 

x’ = f (t, 5, ix, v), u F-~’ P, 

where 5 is an ’ n-dimensional vector, P 
nuous and satisfies the Lipschitz condition in x and the condition /I f /I < 3c (1 + 

jl1E Jl), x = const. Let us consider as well the corresponding stochastic system 

dx = f (t, x, u, v) dt + a dz [tl (6.2) 

where z It] is a standard nondegenerate Wiener process [Z] and a is a small parame- 
ter. Let closed sets M and N be given in space {t, z}.For system (6.1) one and only 
one of the following assertions (see [l], pp, 353-371) is valid for every initial position 

5 Itof = 220 : 
1) a counter-strategy v+- 2, (t, 2, U) and numbers E = eO > 0 and 6 > 0 

can be found such that for every solution xA [t] = xA [t, t,, x0, VI of the equation 

XA- = f k -% itI, @ [tl, 2’ (zf, x,$ [‘$I, u ft])) (6.3) 

7i < t < Zi+ly T* = to, Zm = 6 

the condition 

~AhlE~E(~), XL\ [tlEN’(t), &,<t<T\<6 (6.4) 
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with E = 80 is excluded if only +ri+r - ‘Gi < 6; 

2) a strategy U + u (t, z) can be found such that for every choice of E > 0 

we can find 6 (a) > 0 so that condition (6.4) is fulfilled for every solution xA [t] = 

xA [t, to, x0, v] of the equation 

XA’ = f (t, ZA itI, 24 (Ti, XA [%I), u ItI) (6.5) 

7i < t < ri+l 

if only ‘ti+l -pi < 6 (E) 
Let us consider the motions x [tl = CC It, t,, x*, u*, v [ * 11 of (6.1) and 

a-+) [tl =x [t, t,, LX*, u [.I, v* (u [.])I of(6.2) for t, < t< t* where the 
controls U* and v* (U) are chosen from the conditions 

((x, -x*)-i (t*, x*, u*, v)) = min,max, (6.6) 

<(x* - x*)-f (t*, x*, U, II*)) = max, (6.7) 

Here (zsf) is the scalar product. The function v L-1 = {v [tl, t, < t < t*} in 
II: [[I is any function Lebesgue- measurable in t . The motion ICC”) [tl is a proba- 

bilistic diffusion process. The function u [. ] in d(“) [tl can be arbitrary, including 

random, and,_ possibly, can be connected with the function xix) [ * 1 for which the so- 

lutions xca) ft] of (6.2) can be formalized in the standard concepts of the theory of di- 
ffusion processes under the condition that v (u) is a Borel-measurable function. The 

estimate 

M { I( x itI - dZ) It1 [I “} < (if x (t - to)) I( x* - x* II 2 + (6.8) 

cp(% 6) (t - t*) 
with t - t, < 6 where lim cp (a, 6) = 0 as {a, 6) * 0 and M {g} is 
the mean, is valid. The estimate (6.8) is valid also for the motions x [t] = x [t, 
t,, X*, ZJ 1.1, % (u I:])1 of (6.1) and x(Q [tl = z [t, t,, x*, u*, v I.11 of 

(6.2) for t, < t < t* where the controls v* (u) and U* are chosen from the 
conditions 

<tx* - x*)-f (t*, x*, u, v,)> = max, (6.9) 

((x* - x*)-f (t*, 5*, u*, 77)) = min, max, (6.10) 

The function u I.1 = {u[tl, t, < t < t*> in x [tl is any function Lebesgue-measu- 
rable in t and ZJ* (u) is Borel-measurable. For da) [t] the function v [ - I can be 

random and, in addition, connected with x(a) [t]. 

The following assertions are obtained from the estimates given by well-known ar- 
guments (see [1], pp. 329-347). For the initial position x [toI = Glet there exist a 
strategy U t u (t, z) which ensures condition (6.4) for the motions XL [tl of(6.5). 
Then for any a > 0 and p < ’ we can find a (E, p) > 0 for system (6.2) 

with the same initial position x MO1 = 50 , such that no formalizable choice of con- 

trol 2, in (6.2) can exist which would exclude the conditions 

x(x) f.t.1 E ilYe (r), x(Q) ItI E N’ (t), to < t < 7 < 6 (6.11) 
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with a probability greater than 1 - p if only cc < 01 (a, p) in (6.2). In particular, 
then a counter-strategy T; -I u (t, x, u) cannot exist for system (6.2), which would 
exclude conditions (6.11) with a probability greater than 1 - P . Conversely, let 

a counter-strategy V + 0 (t, z, U) exist for the given initial position J: it,] = 20, 

which etiudes for -motions ZA [tl of (6.3) the condition (6.4) with some va- 
lue of E = &o > 0 if only rGi+r - ri < 6. Then for any E < a0 and PC1 
we can find a (E, P) > 0 for system (6.2) with the same initial position II: [t,] = x0, 
such that no formalizable position choice of control u in (6.2) can exist which would 
ensure conditions (6.11) with a probability greater than 1 -p if a<a(e.p) 
in (6.2). In particular, a strategy U + u (t, z) cannot exist for system (6.2), which 
would ensure conditions (6.11) with a probability greater than 1 - p . 

If the saddle-point condition for the small game (see [l], pp. 55-5’7) is fulfilled, 

then it is sufficient to restrict ourselves only to the strategies u + u (t, z) and 

V + u (t, i) in the preceding assertions. 
It is well known that for system (6.2) the solution of encounter-evasion problems 

is, in general, more regular than for system (6.1). In particular, in many cases of 

control game problems for system (6.2) there exist sufficiently smooth solutions of the 
dynamic programing equation which then is a quasi-linear parabolic partial differen- 
tial equation. From the assertions in Sect. 6 it follows that in such cases it is advisable 
to include in the control cascade,after the wr’ -model described by Eq. (6. l), a fur- 
ther stochastic w(,n)* -model described by Eq.(6.2) with a sufficiently small value of 
a > 0. Here the role of the first leader (see [l], pp. 248-254) is played by the mo- 

tion ru(d”’ it] which through the cascade{y [t], y,, [t], w, [t], WC’ [t], wkn’* [tl} 
takes the motion y [t] to the target needed with a probability arbitrarily close to 

unity. 

7, In accord with the facts discussed in Sec. 6 the advisability of including the 
stochastic leader w’,“‘* [t] in the control loop is connected with the fact that for a 

wide class of differential games for system (6. l), as a consequence of estimates of form 
(6.8), the value of the corresponding stochastic differential game for system (6.2) con- 

verges as a --+ 0 to the value of the original game for system (6.1). 
For example, suppose that for the original !/-system (1.1) we are to choose the 

optimal control II [Xi, Ti+r) = u (Zi, I/ [TJ,--ti+l,. . .I which ensures 
minnmaxUt.lo* (Y 161) where ai (Y) is a given function. The problem mentioned 

corresponds to a Problem 1.1 wherein 

Mc = I{~, Y}, t = 6, a* (y) < cl, N, = [{L u}, lo 4 t -< 6, Y = y] 

and we are required to solve the Problem 1.1 with the smallest value c = CO for which 
it has a solution. For this original problem suppose that at the stage of the w ,(n)-mo- 
de1 we are dealing with a differential game (see [l], pp. 71-79) for system (6.1) with 
the index 

y = minUmaxvo (z [*I), u f u (t, 5), v f u (t, 5, Ll) (7.1) 

This game has the saddle point { uO, V} which corresponds to the game value v“ 
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(see [l], pp.71-79). If the saddle-point condition for the small game (see [l], pp. 55- 

57) is fulfilled, then the game for system (6.1) with index (7.1) has a saddle point at 
the pair of strategies U” f u” (t, z), V” f v” (tt x) .With this game we can associate 
a stochastic game for system (6.2) with the index 

ya = minumax vM (0 (2JG’ [lyl)} (7.2) 

We assume that function o (I) is bounded for - 00 < I < CO and for sufficiently 
smooth JJ~ (to, zo).Then the solution of the given game is determined by the smooth 
solution of the dynamic programing equation with boundary condition 

n 

min max 
UEPVEQ 

According to [3], such a solution vcr (r, 5) exists. The controls u and u are determi- 
ned from the corresponding minimax conditions as Borel-measurable functions U* (t, 2) 

and*v*(t, ? a).Hence, according to [2], follows the existence of the motion z@l [tl as 

a solution of the corresponding (weak) diffusion equation (6.2). Therefore, the game 
admits of a rigorous natural formalization with value (7.2) in the classes of such measu- 
rable strategies u (tl I) and IJ (t, 5, U! 

From estimates (6.6) - (6.10) it follows that lim,,y, = y”. 
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