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Problems of control with incomplete information either on the object
parameters or on its current state or on the disturbances occuring are
analyzed, Solutions involving an approximate model which can be inve-
stigated by the methods of position differential games [1] are described,

1, Many controlled systems with an object describable by differential equations can
be represented in the following manner, The current state at instant { is characterized
by a positiony [¢], where y =y [¢] is an element of a Hilbert space Y , A family
fy [-1|y[t,], II[t,, t*)} of possible motions ¥ U1 = {y [#], ¢, <t < t*}
is defined for any possible given ¢y, ¥ [£,], £*and for our action II [Z,, ¢*), The
real motion ¥ [-] can be interpreted as a concrete choice from

y Lle {y L] y] [5,], T 4, %)} (L1
A game situation is obtained, We —the first player —select [I [¢,, t*); the second pla-
yer, imaginary in general, selects a realization ¥ [-] in accord with (1, 1), The control
is examined on the interval t, < ¢ < ¥. The function IT [7;, Tin) = U (v y [y,
Tis1, €), Tin o> Tis 8 > 0 is called strategy U, Every function 'y [¢], to << t < ¥,
y [t,] = y, which can be realized by successive choices (1.1), where ty = Ty,

t* =1, =0, 1, 2,..., n, To= 1y Tp == ¢, Uy, win) = U (...),
is called a motion y (¢] = y [¢, t,, y,, Ul.

Let there be given the sets

M=t y}:t, <t yes M (1) (1.2)

N=Hty}: 6, <t<H yeEN @] (1.3)
Problem 1.1 Forgiven {f, Yo} & > %o, M and N find a strategy U which
for every € > O ensures the condition

ylRleMmek), yldde N @@, <t (1.4)

<0

for every motion y [¢] = y [¢, to, Yo, Ul for at least one v < ¢ifonly 1, — 1y <
8 (e).

Here M* (f) and N* (t)are the ¢ -neighborhoods of M (¢)and N (¢) in Y, Strategy
U can be defined more broadly by including among the arguments another auxiliary
variable w [7;] formable in the control loop. )
Example 1,1, Let the object be a homogeneous heat-conduction rod (— o0 <

£ << 0co0) controlled bya heat source at point & = 0. A disturbance » [¢] is im-

posed on the source’s controlling intensity u [¢],| u | < p, | v| < v. Here y [t} =

795
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{C(t, §), — co<< E<< o0}, where § (¢, &) isthe temperature distribution along
the rod at instant ¢ For fixed ¢ the function § (¢, &) = m (&) can be treated as

an element of the space Y of square-integrable functions M (&), — 00 << &< oo,

Here

(=]

Iyl =Jze 1= § eeyal 1.5
The equation of motion is
%___aﬁ%—}-(u—}—v)ﬁ(&) (1. 6)

where 8 (§) isa §-function, Let the admissible action Il [¢,, £*)be the constant
function u [#] = w*, ¢, < t<<t*, |u* | < p. Asadisturbance v ltl, ¢, <
t << t* , we admit any piecewise-continuous function| » [¢] | < v.Family (1.1)

is a set of solutions y [¢] = {T (¢, §),—o0 << E<< o0}, ¢, < t L t* , of Eq. (16)
with a known boundary condition y [¢,] = {C (4, &), — o0 << § << o0}, when

v [#] ranges over all possible disturbances, The choice of y [.] in(1.1) is dictated
by the choice of v[#l, ¢, < ¢ << £*. The roles of sets M and N can be played, for
instance, by the sets

M=1I{T@ )ttt [ L@ )] <al
N=[ L@ )<<t <1800 )I<B]

2, Together with the original Y -system (1,1) we examine a certain w-model
of it, whose current state —the positions w [£] —are elements of space Y, We
assume that the variation of w [t}, w [t,] = w, on the interval ¢, <& <(* is de-
termined by the forces F* [t*,t*) and F® [t t*) so that wlitl =wlt, t,,w,,
FO O F®7], Here F'® is chosen first and then F , The following method of forming
wt], t= ¢, » from the position wlt] = w, at the expense of successive choice
of forces @ [¢* 7} ) (to* =i, i=0, 1, 2,... } is termed procedure Q . AgC
an instant T* << the procedure () fixes the next half-open interval T* < 1<<T],
and the force F® [1*, ;%) -as functions of the history {wlt], ty<t<<1*}, Force
F@ [v* 1%, ) may be arbitrary from a set of admissible ones, The set of admissib-
le procedures (Q is restricted only by the condition that procedure @ must not generate
a realization w([#] with an infinite number of partitions T;* on the interval [#,, §]
for any sequence of choices of F® [1,*, 1f,).

The following statement is valid,

Lemma 2,1, For every choice of {ty, Wy}, & > t4, My, Nyand t* =
It,, &} one and only one of the following two statements is valid for the initial position
w [t,] = w, :1)a procedure Q exists which excludes the fulfillment of the condition

whle M, (), wlitle N, (#), t, JLt<TL? i~

for all the motions w [f] = w [¢, ¢,, w,, ()] generated by it; 2) for any choice of
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force F® [t,, t*)we can find a force F® [¢,, #*) which for the motion w [¢] =
wlt, t,, w,, F&, F®]either ensures the fulfillment of the inclusion

whle M, (v), vlleN, @, L <t<rL (2.2)

for some 7T or realizes a position w [#*] = w* for which, as for the initial position,
there does not exist a procedure (@ excluding the condition

whleM, @), vlleN ), t, <tLoL* (2.3)

for all motions w [¢] = w [t, t*, w*, Q1.

3+ We say that the w~model approximates the Y~system from below if for every
possible pair y [t,] = y,, wlt,] = w,, |y, — w, | << & wecanfind II [z, t*)
for every t* & [t,, 0], t* — ¢, < 8, such that for every realization y [-] from
(L.1) we can find F® [z, t*) so that forany F® [g,, t¥) the inequality

fyll —wll P A +% =t )V —we P +00) (t—12,) G.D

is valid for the comesponding motions y [¢] and w [¢] for t, < ¢ <X t* where %

is a constarit and lim @ (§) = 0 as § — 0. We can have another sequence of
choice of forces; we find ¥ so that for every F} we can find II such that for any
realization y [-] from (1.1) estimate (3, 1) is valid for the motions y [¢] and w [ ¢l
The following assertion, provable by a well-known scheme (see [1], pp. 59~70), is valid,

Lemma 3,1, Ietthe w-model approximate the y ~system from below, If
for the position ¥ [t] = y, = w [¢,] = w, there does not exist a procedure Q@
excluding (2. 1) for M, (£) = M*(¢) and N, (¢) = N* (t) for any o > 0, then
we can find a strategy U (v, y [v:), T, a) solving Problem 1,1,

Suppose that for every © & (2,, t*) the forces F® [t,, t*) determine the for-
ces F [t,,7) and FO [y, t*) and, conversely, the forces F™ [z, 7) and F [,
t*)  determine the forces F® [t.y t*) (i = 1,2). In this case the corresponding pie~
ces of motions w [2], ¢, { ¢t <C v and w 2], v ¢ < #*, join together in a natu-
ral way, Let us assume that y [.] is selected from (1.1) as the action of the operator

y [[1=7Y {ylt,], Olz, t*)} (3.2

prescribed a priori, The class Y of admissible operators (3, 2) can be pre-specified
if the process is regarded from the second player's positions,

We say that the w-model approximates the y-system from above if for every
possible pair y [, ] = y,, wlt,] = w* we can find the Y in (3.2) for every t*
[ty, te + 6 L B] » sothatfor every II [t,, t*) we can find for every set
{F® h’ s Tih)y ©= 0,1,. n; T* = t, Tt = 1%} aset {FOr [%, 18,)}
which ensures inequality (3. 1). Here FO fr*, «f,} are chosen after F(% [1: * 1t
while T, and F® [t},, 1§.) are chosen after FO [1;* 7%;). We can have ano-
ther sequence of choices of forces; we can find a method for selecting the set {F® [7;*,
1f,)}  such that for every set {F® [1;*, t¥};)} we can find the Y in (8, 2) so that
for every II [1;, Ti.1) the estimate will be valid for motions y [¢] and w{¢] . The
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following statement, which can once again be proved by a well~known scheme (see
[1], pp. 59~70), is valid,

Theorem 3,1, Letthe ¢-system be regular, i.e,, let it admitofa w-
model which approximates it from both below and above, Then for every choice of {¢,,
Yo}, O > 5, M and NV one and only one of the following assertions is valid for the
initial position y [£,] = y, :

1) a strategy U (v, ¥ [1;], Tisis €) exists solving Problem 1. 1;

2) there exist y > 0 and a choice of operators Y.of (3,2){¢, = 7;, t* = T;)
as a function of {t;, y [1;1}, which for every motion y [¢] excludes (1.4) with ¢ = ¥,
if only Ty — T < Oy (¥)-

This statement corresponds to the theorems on the alternative in [1],

4, It is difficult to satisfy condition (3, 1) if space Y is infinite-dimensional. In
such cases it is appropriate that the w -model approximate not the ¥ -system itseif
but some approximation or some mapping of it. Let ¢ be a certain parameter. We
introduce a transformation

ys [t = j5 (¢, y [t]) (4. 1)

where the y, [¢] are elements of a Hilbert space Y,. With the sets M (f) and N (2)
of Problem 1,1 we associate sets 3/, () and NV, (¢). Let Z,, o > 0, be sets of va-
lues of O , satisfying the conditions ¥, - 3, when f ™ . Suppose that the con~
ditions are fulfilled, From y, [t] = M, (#), ¢ >> 0 follows y [t & M"(@:® (¢), and
forany @ > 0 we can find I, and & (@) > U0 that v (0, 8) < aforoe= Iy,
and ¢ < & (a). For each B > Owecanfind Z;q and (B) > 0 so that from
Ya lt] £ M B (t) follows y [t] &£ M*® when ¢ = Zyp."Let the very same condi-
tions be satisfied for NV (f) and N, (%).
Assume that the systems

vo L1 {ws [ w6 [8,), TLI4,, %)} («.2)

into which system (1,1) can be induced are regular, i,e,, admit of w,~-models appro~
ximating them from below and above, Then Theorem 3, 1 is again true for sucha y -
system (1, 1) regular in approximation,
The system in Example 1,1 is regular in approximation, Indeed, over the variable
y[t] ={C (¢, &), — oo << E<Coo} we perform the transformation

oo

1 . (€ —nF i 4,3)
Co (8, 8) = —S 2 VA®Fo—1) exP[ T2(8 Lo —1) Jg(ia"])dﬂ (

where O > 0 is any one fixed value, System (4, 2) is determined by the equality

Lo (t; =0 (nd+ (4.4
1 g
| e P meto—y) (vl e

*
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where for a fixed action II [z, t*) = u™* [¢], ¢, < ¢ <C t*, we obtain the whole
family {Z, (2, &), £, < t< %, — 00 << E<c o0} When v [f] 2, << H*,
ranges over all possible reahzatlons v [#]. Inaccord with (1.7) and (1.8) the sets
My (f) and N, (¢) are defined as sets of the functions s (2, ) of (4.3) wherein
the functions § (£, M) satisfy the conditions [|{ (¢, -)| Caand | (¢ )| < B. An
functions & (Z, &), being solutions of Eq. (1. 6) and corresponding to all possible u [¢]
and v [¢], t, < t << O for a fixed initial position { (f,, §), are contained in some
compactum in Y. Hence it follows that the necessary relations between //, and M
and between /N, and N are fulfilled.
Let us specify the motions w, [t] = {&s (¢, E)wy — 00 << & << oo} for the @q-
model by the equation
{ 95 (41 E)w
ot

W, =

7——°°<§<°°}= (4.5)

1 E2
{2aV:t(t)+o—t) exp I:“ 4a2(0 +0—1) ],
—oo<a<oo}(u*+v* EAESAPARSY!

The choice of the measurable function u, [#] (¢, < ¢t << t*) will be the force
FO [t,, t*) and the choice of the measurable function v, [#] (¢, <t << t*) will
be the force F® [t,, t*) ,Let u >> v. Analogously to Problem1l, 1 for system (1. 1)
the problem for wg-model (4. 5) can be solved according to the material presented (see
[1], pp. 207-233), We conclude: Problem 1,1 for system (1, 6) has a solution if and on -
ly if at least one motion u® [t] = L° (¢, ), u° [t)] = wy =y, = L° (8, +) » of
the system described by the equation

w.=£={ 1 exp[— E2 J
ot 2aVn(®+o0—1t) 4a2VL(ﬂ+0——t) ’
— oo LE<lo0)p, |pl<p—v

satisfies the conditions

wtle M, (v), WwwIleN (@), L <i<T<d

The resolving strategy U will be extremal to this stable path w° [¢] and the cont-
rol u [t] = u°, 7; < t << Ty, will be determined from the condition

<] 1 E,Z
) _& TyR@ro—m) |~ @i (e+o_fi)] X
(Co (73, ) — £ (7, )) dE = min

=

The right-hand sides of Eq.(4. 5) belong to some compactum in Y . Therefore, the
Ws -model can be approximated by finite~dimensional ws ™ models.
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5, Let us consider the question of approximating a w-model by a finite-dimen-
sional wA™=-model, Let w'™ be an element of some p-dimensional subspace Y™
of space Y . We say that a sequence of y(n)-models approximates a w -model from
below (above) if for every F@) [z, %) (FO [t,, t*)) wecanfind FY [ty, %)
(F,® [t*, t¥#)) so that for every Fg) [tser t*)(F,® [t*, t*)) we can find Fo [t*,
t*) (F@ [g,, t*))so that the estimate

-

[ wlt] — w2+, (8 — ) [wye — U L (5.1)
P (61 n) (t - t*)

is valid when £, << ¢ < t* < 6, where lim ¢ (6, n) =0 as n — oc and
8§ — O . Let the y=-system (1,1) be regular in approximation and let each W, -mo-
del in its own tum be approximated from above and below by a sequence of wy=mo-
dels. Then the solution of Problem 1,1 for the given y-system is determined by the
solutions of the appropriate analogous problems for the Wi =models with appropriate ¢
and large 72. The control process can in fact be effected by realizing in the regulation
scheme the cascade: {y -system, y,-system, w,-model,w."~model}.In this case the
controls I, F (%, Ff,'f),,, Fofl,z, F,() will be selected from conditions (3, 1) and (5.1)
and from the solvability conditions for the analog of Problem 1, 1 for the w,'™ -model,
The solution of this analog of Problem 1,1 can be constructed by one of the methods in
(1%

6, It is well known that the solution of control game problems for finite-dimen-
sional systems can be regularized in a number of cases by superposing small random
disturbances. When a w,™ -model is introduced in the control loop, this regulariza-~
tion can be given a real meaning,

Let a certain system be described by the equation

zr=f( z, u v), ue=P, veQ (6. 1)

where z is an ' 7 -dimensional vector, P and Q are compacta, function f is conti-
nuous and satisfies the Lipschitz condition in z and the condition || f[ <% (1 +
lxl), » = const. Let us consider as well the corresponding stochastic system

dz = f(t, 2, u, v) dt + o dz [t] (6.2)

where 2z [#] is a standard nondegenerate Wiener process {2} and & is a small parame-
ter. Let closed sets Jf and N be given in space {#, x}.For system (6. 1) one and only
one of the following assertions (see [1], pp. 353-371) is valid for every initial position

z {t,] = 24
1) a counter-strategy V -~ » (¢, x, u) and numbers & = gy >0 and$ > 0
can be found such that for every solution z, [t] = za [2, #,, z,, V] of the equation

xa' = f I, za [1), w [2], w (4, za [7;], w [2D) (6.3)
TP T, T =y Ty = U

the condition
zp [1] &= Mz (v), za [tl = N® (2), Ifn<t<'t<\‘} (6.4)
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with & = g, is excluded if only T;y; — T; < 6;
2) a strategy U - u (¢, *) can be found such that for every choice of g > 0
we can find § (g) > 0 so that condition (6. 4) is fulfilled for every solution z, [{] =

TA [+ + an 771 of the amuation
a il Bgy xy, U] of the equaticn
za" = f (¢, za [z], u (ts, 2a [ti]), v [t]) (6.5)

T, < T

if only 7.,y —7; < 6 (¢)

Let us consider the motions a2 [f] = x [§, £y, Ty, Uy, vi-11 of (6.1) and
dO [t =z t, t,, x*, u [-], v* (u [-1)] of (6.2) for ¢, < t < t* where the
controls u, and »* (u) are chosen from the conditions

<(‘Z* —.’L’*)'f (t*, Ty Uy, U)> = minumaxv (6. 6)
(zy — *)-f (ty, 2%, u, v*)) = max, (6.7

Here {z-f) is the scalar product. The function v [-] = {v [¢#], ¢, < ¢t<<t*}in

z [¢] is any function Lebesgue- measurable in ¢ , The motion z(*) [¢] is a proba-
bilistic diffusion process, The function u [-] in #* [#] can be arbitrary, including
random, and, possibly, can be connected with the function z* [-] for which the so-
lutions 2@ [¢] of {6. 2) can be formalized in the standard concepts of the theory of di-
ffusion processes under the condition that v (&) is a Borel-measurable function. The
estimate

M{|zt] =z %} < A +%(E— b)) [z, —2*[® + (6.8)
o(e, 8) (£ — 1)
with ¢ — £, < 6 where lim ¢ (&, 8) = 0 as {a, 8} >0 and M {E} is
the mean, is valid, The estimate (6, 8) is valid also for the motions z [¢] = z [¢,
tir Tuo W )y e (w [: D] of (6.1) and 2 [t] = z [2, ¢, z*, u*, v [ 1] of
(6.2) for t, < t<< t* where the controls v, (1) and u* are chosen from the
conditions

x* — ) f (tgy 2y, U, D)) = max, (6.9)
((z* — x) f (tyy Ty, u¥, ¥)) = min, max, (6.10)
The function u [-1 = {ultl, t, < ¢t << t*}in z [#] is any function Lebesgue-measu-
rable in ¢ and v, (u) is Borel-measurable, For g4 [¢] the function » [-] can be
random and, in addition, connected with (=) [¢].

The following assertions are obtained from the estimates given by well-known ar-
guments (see [1], pp. 329-347), For the initial position [to) = Zglet there exist a
strategy U — u (¢, z) which ensures condition (6. 4) for the motions z, [t} of(6. 5).
Then forany ¢ >0 and p << ' wecanfind o (s, p) >0 forsystem (6,2)
with the same initial position x |¢,] = Z, , such that no formalizable choice of con-
trol ¥ in (6.2) can exist which would exclude the conditions

@ [t M (1), 2 leN (1), b <i<TLY (6. 11)



802 N.N. Krasovskii

with a probability greater than 1 — p if only & < @ (&, p) in (6,2). In particular,
then a counter-strategy V -~ v (¢, x, u) cannot exist for system (6. 2), which would
exclude conditions (6, 11) with a probability greater than 1 — p, Conversely, let
a counter-strategy V —— v (¢, &, u) exist for the given initial position z [¢,] = z,,

which exedudes for .motions za [t] of (6.3) the condition (6, 4) with some va-~
e of & = &, > Oifonly 7;,, — 7, < 8. Thenforany e << g, and p <1

we can find a (e, p) > 0 for system (6. 2) with the same initial position z [t,] = z,,
such that no formalizable position choice of control u in (6, 2) can exist which would
ensure conditions (6. 11) with a probability greater than 1 —p if o < a (e. p)
in (6,2). In particular, a strategy U — u (¢, ) cannot exist for system (6, 2), which
would ensure conditions (6, 11) with a probability greater than 1 — p .

If the saddle-point condition for the small game (see [1], pp, 55-57) is fulfilled,
then it is sufficient to restrict ourselves only to the strategies [/ — u (¢, ) and
V — v (t, v} in the preceding assertions,

It is well known that for system (6, 2) the solution of encounter-evasion problems
is, in general, more regular than for system (6,1), In particular, in many cases of
control game problems for system (6, 2) there exist sufficiently smooth solutions of the
dynamic programing equation which then is a quasi-linear parabolic partial differen~
tial equation, From the assertions in Sect, 6 it follows that in such cases it is advisable
to include in the control cascade, after the w(”)-rnodel described by Eq, (6, 1), a fur-
ther stochastic (' ™-model described by Eq.(6, 2) with a sufficiently small value of

a > 0 Here the role of the first leader (see [1], pp. 248-254) is played by the mo-
t10n wi"* [#] which through the cascade(y [t], y, [£], ws (2], wi? [#], wi”* (41}
takes the motion y [¢] to the target needed with a probability arbitrarily close to
unity.

7. Inaccord with the facts discussed in Sec, 6 the advisability of including the
stochastic leader wf,")* [#] in the control loop is connected with the fact that fora
wide class of differential games for system (6, 1), as a consequence of estimates of form
(6. 8), the value of the corresponding stochastic differential game for system (6, 2) con-
verges as o —> 0 to the value of the original game for system (6. 1).

For example, suppose that for the original y-system (1.1) we are to choose the
optimal control I [t ty) = U@ yiuh T ) which ensures

mingmax,j0* (y () where ©* () is a given function, The problem mentioned
corresponds to a Problem 1, 1 wherein

Me=Ut 9}, t=0 o* <, Ne=[Ut, vhto<t<d yEY]
and we are required to solve the Problem 1,1 with the smallest value ¢ = ¢o for which
it has a solution, For this original problem suppose that at the stage of the w &Memo-

del we are dealing with a differential game (see [1], pp.71-79) for system (6, 1) with
the index

Y= minUmaXV(.o (‘x [ﬁ])a U+u (tv x)7 V+w (t» x, L’) (7. 1)

This game has the saddle point {U°, Vv*} which corresponds to the game value Y°
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(see [1), pp.71-79). If the saddle-point condition for the small game (see [1], pp. 55~
57) is fulfilled, then the game for system (6, 1) with index (7, 1) has a saddle point at
the pair of strategies U® =+ u° (¢, ), V° + v° (¢, z) .With this game we can associate
a stochastic game for system (6, 2) with the index

Vo = minymax y M {o (@ [B])} (7.2)

We assume that function ® (z) is bounded for — 0o < 2 < oo and for sufficiently
smooth vy, (t, Zo), Then the solution of the given game is determined by the smooth
solution of the dynamic programing equation with boundary condition

ay 2 %y = 9
e, O a . [ § ‘ Y ]
o 2 &5 Tuepoeq & 97 fithom )

Ve @, 2) = o ()

According to [3], such a solution Y (£, #) exists. The controls » and v are determi-
ned from the corresponding minimax conditions as Borel-measurable functions u* (¢, z)
and'v*(t, z, u),Hence, according to [2], follows the existence of the motion 2'* [t] as
a solution of the corresponding (weak) diffusion equation (6. 2). Therefore, the game
admits of a rigorous natural formalization with value (7, 2) in the classes of such measu-
rable strategies » (£, %) and v (¢, z, )

From estimates (6., 6) — (6, 10) it follows that lim, v, = v°,
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